skip to main content


Search for: All records

Creators/Authors contains: "Moreno, Ana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The rate and consequences of future high latitude ice sheet retreat remain a major concern given ongoing anthropogenic warming. Here, new precisely dated stalagmite data from NW Iberia provide the first direct, high-resolution records of periods of rapid melting of Northern Hemisphere ice sheets during the penultimate deglaciation. These records reveal the penultimate deglaciation initiated with rapid century-scale meltwater pulses which subsequently trigger abrupt coolings of air temperature in NW Iberia consistent with freshwater-induced AMOC slowdowns. The first of these AMOC slowdowns, 600-year duration, was shorter than Heinrich 1 of the last deglaciation. Although similar insolation forcing initiated the last two deglaciations, the more rapid and sustained rate of freshening in the eastern North Atlantic penultimate deglaciation likely reflects a larger volume of ice stored in the marine-based Eurasian Ice sheet during the penultimate glacial in contrast to the land-based ice sheet on North America as during the last glacial. 
    more » « less
  2. null (Ed.)
    Abstract This study examines the first precisely dated and temporally highly resolved speleothem record from Iberia that reconstructs the Oldest Dryas (OD). The onset of cold conditions in the study area, contemporary with the beginning of Heinrich Stadial 1, is recorded at 18.13 ± 0.08 ka, with a pronounced drop of 6.1‰ in δ 13 C in 250 years. Henceforth, stadial conditions depict a period of instability in the Atlantic Meridional Overturning Circulation, peaking in freshwater input from iceberg melting during Heinrich Event 1. Anomalies in the δ 18 O of the stalagmite attributed to such a freshwater event are found from 16.17 to 15.89 ka. Such absolute dates given to the onset of the OD in Iberia and to the main iceberg discharges are reliable anchor points for non-absolute chronologies. Two periods are identified in the OD: OD-a (18.13–16.17 ka) is characterized by wet conditions and a faster growth rate, and OD-b (15.89–14.81 ka) exhibits relative dryness and a slower growth rate. The sudden release of fresh water is considered to be the reason for the disruption of rainfall patterns in eastern Iberia. The present study also highlights the existence of heterogeneous and complex hydrological conditions during the OD in Iberia when both Atlantic and Mediterranean realms are considered. 
    more » « less
  3. null (Ed.)
    The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard–Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic–Asian Monsoon-Westerlies directionality of climatic recovery. 
    more » « less